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ABSTRACT
The degradation of backsheets and encapsulants in photovoltaic (PV) modules compromises their long-term performance and

reliability. This study investigates the use of a compact near-infrared (NIR) spectrometer for high-throughput field diagnostics of

PV materials. Operating in the 1550–1950 nm spectral range, the spectrometer detects key molecular absorption bands to charac-

terize polymer compositions. Principal component analysis (PCA) applied to the spectral data significantly improved material

differentiation compared to raw data, achieving classification reliability exceeding 95%. Field deployment at a 10mw PV installa-

tion demonstrated the method’s scalability, with 981 modules analyzed at a rate of one module every 3 s. Spatial mapping revealed

that all analyzed backsheets featured polyethylene terephthalate (PET) cores, with approximately 65% incorporating fluoropol-

ymer- and 35% PET-based outer layers. These findings demonstrate the scalability and efficiency of a portable NIR spectrometer

for rapid, nondestructive diagnostics of PVmodules. The ability to directly identify polymer compositions during high-throughput

field measurements enables applications in predictive maintenance, reliability assessment, bill-of-materials verification, and effi-

cient sorting and recycling of end-of-life modules.

1 | Introduction

The deployment of photovoltaic (PV) systems has become a
global priority in the transition toward sustainable energy
solutions. The long-term reliability of the field-installed PV
modules depends on the degradation of their constituent com-
ponents. Backsheets and encapsulants play crucial roles in
protecting solar cells from environmental stresses such as ultra-
violet (UV) radiation, moisture ingress, and helping to reduce
thermal gradients. Degradation of backsheets and encapsulants
compromises the structural and electrical integrity of PV
modules and affects their overall energy yield and operational
safety [1–3].

Backsheets are typically composed of three-layered polymer
stacks, with a polyethylene terephthalate (PET) core sandwiched
between outer layers made of materials such as polyvinylidene
fluoride (PVDF), polyvinyl fluoride (PVF), fluorinated copolymers,
polyethylene (PE), and polypropylene (PP). These multilayer
structures exhibit distinct aging behaviors under prolonged envi-
ronmental exposure.

Similarly, encapsulants, such as ethylene-vinyl acetate (EVA)
copolymer or more modern polyolefin elastomers (POE), are
prone to hydrolytic and photothermal degradation, which can
lead to material failure over time. Considering that the polymer
bill-of-materials of installed PV modules are often nondisclosed
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or not traceable, identifying these polymer materials in the field
and monitoring their degradation pathways are essential for
improving module design and developing adequate maintenance
strategies [4–6].

Spectroscopic methods, particularly near-infrared (NIR) spec-
troscopy, have proven effective in characterizing polymer back-
sheets and encapsulants. NIR spectroscopy enables rapid,
nondestructive analysis of molecular vibrational features of poly-
mer stacks with thicknesses of many hundreds of microns, mak-
ing it ideal for nondestructive identification of polymer types [7].

Traditional laboratory-based Fourier-transform near-infrared
(FT-NIR) spectrometers offer high resolution and sensitivity
but are often impractical for field applications due to their
size/price, the complexity of their operation, and the sensitivity
of these methods to climatic conditions. To address these limita-
tions, compact and robust handheld NIR spectrometers have
been tested, allowing in-situ field analysis of polymeric materials
in PV modules [8]. However, the miniaturization of the spec-
trometer leads to certain trade-offs, particularly in spectral reso-
lution and signal-to-noise ratio, which can affect measurement
accuracy andmaterial differentiation. While a compact NIR spec-
trometer offers the advantage of portability and robustness, its
reliability in field applications compared to high-performance
laboratory systems remains an open question. In particular, chal-
lenges such as calibration stability, measurement consistency,
and spectral interference must be addressed to ensure their effec-
tiveness in real-world diagnostics.

This study aims to evaluate the performance of a miniature hand-
held near-infrared spectrometer (NIRONE S2.0 by Spectral
Engines) for identifying PV polymer compositions. In contrast
to our previous studies [9, 10] that focused on laboratory-scale
validation, this work demonstrates the transition of NIR spec-
troscopy into a robust, high-throughput field tool. The device’s
capabilities are tested in both laboratory and field environments
and benchmarked against a high-end benchtop FT-NIR spec-
trometer (ARCoptix FTNIR-L1-026-0TE) to compare measure-
ment accuracy, resolution, and practical applicability. To
ensure reliable classification despite reduced spectral resolution
and increased noise, a tailored preprocessing workflow was
applied, including baseline correction and selective exclusion
of water absorption bands. The compact NIR spectrometer

integrates portability with consistent and reliable data acquisi-
tion, enabling rapid, noninvasive field diagnostics, with measure-
ment times of approximately 3 s per module and deployment
across nearly 1000 PV modules. By detecting spectral variations
associated with polymer degradation, this study examines the
sensor’s capability for backsheet identification and degradation
monitoring. The results provide meaningful insight into its suit-
ability for high-throughput PV diagnostics and its potential role
in predictive maintenance strategies, as recent field studies show
that bill-of-materials (BOM) identification enables early detec-
tion of degradation-prone materials, such as PA or FC backsheets
and specific EVA types, which are linked to insulation loss,
potential-induced degradation (PID), and inverter shutdowns
[11–15]. More broadly, this approach supports future integration
into semiautomated and machine learning-driven diagnostic
platforms alongside thermography, UV fluorescence, and photo-
luminescence imaging.

2 | Description of NIR Spectrometers

Near-infrared absorption (NIRA) measurements were performed
using the NIRONE S2.0 sensor (Spectral Engines, Finland) to ana-
lyze commercial solar PV modules with glass-backsheet architec-
tures. Its compact design enables noninvasive, high-throughput
field measurements. Although limited to the 1550–1950 nm spec-
tral range, the sensor detects key molecular absorption bands
corresponding to C–H bonds in aromatic and aliphatic com-
pounds and O–H bonds indicative of water content. This spectral
window was specifically selected for backsheet identification,
while encapsulant analysis in glass/glass modules remains ongo-
ing. Measurements were performed in NIR reflectance mode, and
NIRA spectra were calculated using the reflectance spectrum of
the NIR excitation source detected with a Spectrolon standard
provided by the manufacturer.

For reference, a fiber-coupled FT-NIR spectrometer (FTNIR-L1-
026-0TE, ARCoptix, Switzerland) was used. This benchtop mirror
interferometer-based system provides a larger spectral range (900–
2600 nm), but requires an external light source and power supply,
making potential field deployment more complex. A direct com-
parison of key specifications is presented in Table 1, ensuring con-
sistency in performance metrics:

TABLE 1 | Comparison of NIRONE and ARCoptix FT-NIR spectrometers.

Specification NIRONE S2.0 (spectral engines) FT-NIR (ARCoptix)

Spectral range [nm] 1550–1950 nm 900–2600 nm

Resolution 1–10 nm <1 nm

Detector type Single-element extended InGaAs Extended InGaAs

Signal-to-noise ratio (SNR) 11 000 – 1500 >30 000:1

Power consumption <1.1 W (peak)< 300mW (nominal) 7.5–12V (1–6W depending on version)

Operating temperature [°C] +10 to +50 +5 to +35

Built-in NIR light source Yes No

Size (W × L ×H), mm 25 × 25 × 17.5 180 × 126 × 78

Weight, g 15 1700
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3 | Identifying Backsheet Compositions through
Characteristic Spectral Patterns

3.1 | Spectral Data Acquisition and Challenges

Before field deployment, the miniature NIR spectrometer needs
to be calibrated in the lab using a collection of known backsheet
types. This lab-based study investigated field-aged solar modules
with six distinct backsheet types (Table 2) from different man-
ufacturers [10].

The spectral data for different backsheets were collected using
the NIRONE spectrometer, which operates at a lower resolution
compared to the ARCoptix device (Figure 1). Despite this limi-
tation, the NIRONE spectra capture key absorption bands asso-
ciated with backsheet polymers, including the first overtone of
=C–H vibration at 1660 nm, an overtone of –C–H vibration at
1730 nm, and the O–H vibration band at 1910 nm (Figure 2a).

At first glance, the spectra show significant differences, further
complicated by additional factors. In particular, variations in
backsheet compositions due to aging, weather exposure, and
manufacturing differences introduce sample heterogeneity
[16–18]. Instrumental artifacts, such as noise and distortions

caused by the spectrometer’s hardware, also affect the data.
Additionally, scattering effects from additives like rutile TiO2 pig-
ments, which are often present in backsheets, contribute to the
complexity and variability of the NIRA spectra. Environmental
factors can further alter the spectral results [16]. These combined
influences make it challenging to directly associate the raw spec-
tral data with specific backsheet types. The overlapping features
and broad absorption bands obscure the differences between dif-
ferent materials in the polymer stack forming the backsheet, pre-
venting clear differentiation.

Since the handheld sensor has a lower spectral resolution and
higher noise levels, the raw spectra show broad, overlapping
absorption bands that limit the ability to reliably distinguish
between different backsheet types. To resolve this ambiguity,
advanced preprocessing coupled with dimensionality reduction
techniques, such as principal component analysis (PCA), was
applied to extract meaningful chemical information for accurate
backsheet classification. The preprocessing steps included base-
line correction and exclusion of the water absorption band, as
discussed in the following sections.

3.2 | PCA for Backsheet Differentiation

To overcome challenges in raw spectral data interpretation, PCA
[19] was applied to the spectral data collected by the NIRONE
spectrometer. When applied to unprocessed spectral data, PCA
successfully separated the six backsheet types into distinct clus-
ters (Figure 2b). The PCA outcomes, including the first two prin-
cipal components, PC1 and PC2, accounting for 98.74% and
0.76% of the total variance, respectively, and clustering indices
are presented in Table 3.

To evaluate the reliability of the classification, several clustering
indices were applied. The Silhouette Score [20] measures how
well points fit within their clusters (higher values indicate better
clustering), while the Davies–Bouldin index (DBI) [21] evaluates
cluster separation (lower values indicate higher reliability). The
Calinski–Harabasz index (CHI) [22] quantifies cluster compact-
ness relative to separation (higher values indicate well-defined
clusters). These metrics, typically applied to evaluate clustering
algorithms [23, 24] such as K-means, hierarchical clustering,
density-based or distribution-based methods, can also be used
to assess the separation of predefined classes in PCA [25–28]
space. Here, they quantify how distinctly different backsheet
types form separable groups in the reduced spectral feature space.
Applied in this way, the clustering metrics provide a robust and
interpretable measure of classification quality. The dominance of
PC1 suggests that most spectral variance is due to baseline effects
or instrumental noise, whereas the minimal contribution of PC2
indicates that only a small portion of variance corresponds to the
chemical composition of the backsheet sample. Optimizing clus-
tering performance increases the separation between backsheet
types by minimizing the influence of artifacts, instrumental
noise, and baseline variations. This ensures that classification
is driven by meaningful spectral features, resulting in more dis-
tinct and reliable groupings.

To investigate the reasons for the large imbalance between PC1
and PC2, an advanced analysis of the raw spectra was further

TABLE 2 | Backsheet structures used for the lab-based calibration

and their abbreviations.

Structure Abbreviation

PET/PET/PE APET

PVF1/PET/PVF1 BPVF

PA CPA

PVDF/PET/PVDF DPVDF

PVF2/PET/PVF2 EPVF

FC/PET/FC FFC

Notes: Indices (1) and (2) refer to different thicknesses, 50–55 μm for (1), and
30–35 μm for (2); the air layer and the inner layer of backsheets are typically
filled with microcrystalline rutile titania pigments.

FIGURE 1 | Comparison of normalized NIRA spectra from ARCoptix

(diamond scatter) and NIRONE (circle scatter) spectrometers for an

exemplary FFC backsheet.
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performed. It was hypothesized that baseline effects, such as
instrument drift or background interference mask important
spectral features, leading to the dominance of PC1 that may
not reflect meaningful chemical variations. This imbalance is
problematic because it suggests that most variance in the data
is driven by noninformative factors rather than actual differences
in backsheet composition, potentially reducing classification
accuracy.

To account for this effect, a baseline correction was applied to
remove spectral background signals, revealing true absorption
features (Figure 3a and S1a). After baseline correction, spectra
were integrated into the range of 1550–1950 nm to obtain a rep-
resentative value for each backsheet type, revealing distinct
absorption patterns (Figure 3a). This correction significantly
improved data clarity, making it easier to differentiate backsheet
types.

Additionally, the baseline integral over 1550–1950 nm was calcu-
lated to quantify its contribution to spectral features. The cor-
rected spectra were then divided into four absorption regions:
‘aromatic’ =C–H band [29] (1570–1700 nm), ‘aliphatic’ -C–H
band (1700–1750 nm), a scattering-dominated region (1750–
1850 nm, chemically meaningless), and water-related absorption
(1850–1950 nm), the latter indicating possible moisture ingress.
The integrals of these spectral regions were compared across
the six backsheet types, revealing the 1700–1750 nm range as
particularly significant for distinguishing between different back-
sheets by baseline area (Figure 3b). PCA score analysis revealed
that PC1 corresponded to baseline integrals, reflecting back-
ground effects rather than meaningful spectral content, while
PC2 was related to the 1700–1750 nm region, capturing aliphatic
bond-related features. These findings highlight that PC1, despite
accounting for most variance, is largely noninformative.
Removing the baseline before PCA significantly improves

FIGURE 2 | NIRA spectra and PCA analysis of spectral data: a) raw absorbance spectra of six backsheet types and b) PCA of unprocessed spectral

data.

TABLE 3 | Clustering metrics for spectral data.

Silhouette
score (S)

Davies–Bouldin
index (DBI)

Calinski–
Harabasz

index (CHI)

Raw absorbance data (1550–1950nm) 0.61 0.64 770.81

Processed data (1550–1950nm) 0.78 0.31 1706.28

Processed data without H2O band (1550–1890nm) 0.74 0.33 1886.82

FIGURE 3 | Processed spectra and feature-based clustering: a) identification of key absorption features, and b) 2D clustering based on the relation-

ship between baseline area and peak area in the 1700–1750 nm range.
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analysis relevance by ensuring that the variance reflects actual
chemical differences rather than artifacts (Figure 4a). This con-
clusion is supported by clustering metrics: the Silhouette Score
increased from 0.61 to 0.78, the DBI decreased from 0.64 to
0.31, and the CHI more than doubled from 770.81 to 1706.28,
indicating substantially improved cluster separation and reliabil-
ity of classification (Table 3).

To assess the impact of spectral preprocessing on classification
accuracy, integrals for the identified spectral regions were recal-
culated, and a new mapping approach was implemented. As a
result, the contribution of PC1 and PC2 became more balanced
compared to unprocessed data, with improved clustering indices
(Table 3), indicating a clearer separation of backsheet types. The
integral map (Figure S1b) showed that plotting ‘aromatic’ (1570–
1700 nm) versus ‘aliphatic’ (1700–1750 nm) integrals mimics
PCA clustering, confirming that PCA effectively represents the
ratio of these vibrational intensities in polymer backsheets.
Loadings analysis (Figure 4b) further validated these findings
by identifying spectral regions that contributed most to each
principal component. In particular, PC1 was primarily influ-
enced by =C–H band intensity, while PC2 reflected aliphatic -
C–H vibrations, reinforcing their significance in backsheet differ-
entiation [19]. The improved separation between backsheet types
demonstrates that the spectral preprocessing applied successfully
extracts relevant chemical information.

A key consideration in the spectral analysis was the presence of
water absorption in the 1850–1950 nm range. Since some poly-
meric backsheets—particularly nonfluorinated types—can absorb

moisture [30] depending on environmental conditions [31], their
spectral NIRA signatures may be affected by transient water con-
tent, independently of material composition. In contrast, fluori-
nated layers typically exhibit low moisture uptake but may still
allow limited water permeation. The influence of transient envi-
ronmental factors on PCA classification can be considerably
reduced by neglecting the water absorption band during the spec-
tral analysis. To evaluate the impact of water absorption on clas-
sification accuracy, the spectral region highlighted in Figure S2,
where water bands are present, was analyzed. These absorption
bands may result from moisture retention within the polymer
matrix due to its porosity and physicochemical interactions with
water. To determine whether this region influenced PCA classifi-
cation, this water-related range was excluded, and the remaining
data (Region 1 in Figure S2) were reanalyzed using PCA
(Figure 4c). The results in Figure 4c indicate that excluding the
water absorption band did not alter the clustering patterns.
Moreover, the percentage contributions of PC1 and PC2, 81.06%
and 16.45%, respectively, as well as the clustering indices (DHI
and CHI, Table 3), remained consistent, suggesting that water
presence does not significantly impact the classification of back-
sheet types.

To further validate the robustness of the clustering, confidence
ellipses [32] were applied to the PCA space (Figure 4c) to assess
assignment probability and cluster separation. These ellipses rep-
resent probability regions corresponding to 1σ (68.27%), 2σ
(95.45%), and 3σ (99.73%) uncertainty levels, based on a multivar-
iate Gaussian distribution [33, 34] for each cluster. Assignment
was performed by evaluating whether a sample fell within the 2σ

FIGURE 4 | Principal component analysis (PCA) of processed spectral data across different wavelength ranges: a) PCA of processed data (1550–

1950 nm), b) loading spectra of PC1 and PC2, and c) PCA of data excluding the water band (1550–1890 nm) with confidence ellipses.
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ellipse of a known cluster; samples lying outside the 3σ ellipses
were considered unassigned. This approach allows visualization
of cluster spread and overlap, and enables quantitative assess-
ment of classification reliability based on Mahalanobis distance.

These results confirm that, following appropriate preprocessing,
the NIRONE spectrometer enables reliable differentiation of
backsheet types with high classification confidence, even under
varying environmental conditions.

4 | Field Testing of NIRONE Sensor in Solar
Plants

To assess the performance of the NIRONE sensor in field condi-
tions, it was deployed at a large-scale PV plant in Southern
Germany with a capacity of 10 MWp and a commissioning age
of more than 10 years. The primary objective was to identify differ-
ent backsheet types and compare the outcomes of measurements
with NIRONE to those obtained using the high-end ARCoptix spec-
trometer as a reference. The evaluation focused on classification
accuracy, measurement speed, and practical usability.

The ARCoptix system was employed to measure three rows of
solar modules, resulting in spectral data from 127 modules, with
each measurement taking approximately 2 min per module. The
acquisition time was determined by the need to manually move a
carriage containing the spectrometer, NIR lamp, fiber-coupled
probes, and power supply along the row of PV modules before
each measurement. In contrast, the NIRONE sensor, optimized
for high-throughput measurements, was used to test 981 modules
across the PV plant, with a significantly shorter acquisition time
of ca. 3 s per module. This shorter acquisition time is enabled by
the integration of the NIR lamp into the spectral sensor and the
use of a tablet PC for power supply, allowing an experimenter to
move freely along the row of PV modules.

As discussed in previous sections, the spectral range of the
NIRONE sensor was 1550–1950 nm, specifically selected for
backsheet identification (Figure 1). The initial analysis demon-
strated that both the ARCoptix and NIRONE systems effectively
differentiated between two backsheet types: PET/PET/PE (APET)
and FC/PET/FC (FFC) present in the test field, see Figure S3a, b
(SI). However, while both systems provided reliable classifica-
tion, the NIRONE sensor enabled a much higher sampling rate,
allowing for a more comprehensive mapping of backsheet distri-
bution across the PV plant for the same measurement period.

The backsheet identification model developed in this study (see
Section 3.2) was applied to generate a spatial distribution map of
backsheet types (Figure 5). The results showed that rows 1–9
and 11 predominantly consisted of FFC backsheets, while rows

10 and 12 were primarily composed of APET backsheets.
Classification was performed using confidence ellipses derived from
PCA space, with most data points falling within the 2σ (95.45% con-
fidence) region, corresponding to a squared Mahalanobis distance
(d2) threshold of 5.99, as defined by the chi-squared (χ2) distribution
with 2° of freedom. This indicates a high degree of reliability in the
assignment of backsheet types across the analyzed modules.

Notably, the NIRONE sensor demonstrated stable operation
across a broad temperature range, up to 60°C, and a long opera-
tional time, allowing all modules to be probed without additional
recharging of the sensor-tablet combination.

5 | Conclusion

This study explored the application of a compact NIR spectrometer
for high-throughput PV module diagnostics, focusing on back-
sheet identification and classification. By leveraging PCA and
spectral preprocessing, the NIRONE spectrometer successfully dif-
ferentiated between six distinct backsheet types. Clustering met-
rics confirmed improved classification accuracy, with the
Silhouette Score increasing from 0.61 to 0.78, the DBI decreasing
from 0.64 to 0.31, and the CHI rising from 770 to 1706 after base-
line correction. These improvements indicate that baseline correc-
tion reduced noninformative spectral variance, enhanced cluster
separation, and increased the compactness of distinct backsheet
groups in PCA space.

The final PCA was further optimized by applying baseline correc-
tion and calculating spectral integrals over key absorption regions.
Excluding the water absorption band (1850–1950 nm) confirmed
that moisture variability did not affect classification. The final
model used the 1550–1950 nm range, focusing on absorption bands
of aromatic (1570–1700 nm) and aliphatic species (1700–1750 nm),
instrumental for backsheet differentiation. Confidence ellipses
were applied to PCA clustering to assign new data points to existing
clusters, enabling the visualization of cluster spread and overlap.

Field testing at a 10 MWp PV plant covered 981 modules, with
the NIRONE sensor measuring each in 3 s, compared to 2 min
per module for the high-end ARCoptix system. A spatial distri-
bution map was generated, visualizing the populations of two
backsheet types, FC/PET/FC and PET/PET/PE, in full agreement
with the results obtained from the reference high-end ARCoptix
NIR spectrometer. This one-to-one correspondence across all
tested modules confirms the reliability of the NIRONE sensor
for large-scale diagnostics.

These findings demonstrate the potential of a compact NIR spec-
trometer for efficient polymer characterization in PV systems.
Their fast performance, portability, robustness, and nondestructive

FIGURE 5 | Spatial distribution of backsheet types across the tested PV plant.
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measurement capability allow for rapid assessment of backsheet
structures. Future work may focus on refining classification mod-
els, expanding spectral range, and integrating machine learning to
enhance accuracy and predictive capabilities in PV module diag-
nostics, while also enabling more efficient sorting and recycling of
end-of-life modules through improved polymer identification.
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Supporting Information

Additional supporting information can be found online in the Supporting
Information section. Figure S1. a) Baseline in the absorbance spectrum
of FFC measured by the NIRONE spectrometer. b) Cluster plot of integral
values for the spectral regions 1570–1700 nm and 1700–1750 nm across
different backsheet types. Figure S2. Absorbance spectra highlighting
key regions measured by NIRONE for six different backsheets. Figure
S3. Absorbance spectra measured across solar modules using different
spectrometers. a) Full-range absorbance spectra (1250–2200 nm) of
127 solar modules measured using the ARCoptix spectrometer,
b) Absorbance spectra (1550–1950 nm) of 981 solar modules measured
using the NIRONE spectrometer.
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